\(v = u + at \)
\(v = u
+ at
\)
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\(v = u + at \)
\(v = u
+ at
\)
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]
\[v = u + at\]
\[s = ut + \frac{1}{2}at^2\]